Oxygen chemoreception by carotid body cells in culture.

نویسندگان

  • M C Fishman
  • W L Greene
  • D Platika
چکیده

Chemoreceptors for oxygen reside within the carotid body, but it is not known which cells actually sense hypoxia and by what mechanisms they transduce this information into afferent signals in the carotid sinus nerve. We have developed systems for the growth of glomus cells of the carotid body in dissociated cell culture. Here we demonstrate that, as in vivo, these cells contain the putative neurotransmitters dopamine, serotonin, and norepinephrine. Oxygen tension regulates the rate of dopamine secretion from the glomus cells. Similar to chemically stimulated catecholamine secretion from other adrenergic cells this hypoxia-stimulated release requires extracellular calcium. These results are compatible with the suggestion that the glomus cells of the carotid body are chemoreceptor cells and that they signal hypoxia by regulated secretion of dopamine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon monoxide: a role in carotid body chemoreception.

Carbon monoxide (CO), produced endogenously by heme oxygenase, has been implicated as a neuronal messenger. Carotid bodies are sensory organs that regulate ventilation by responding to alterations of blood oxygen, CO2, and pH. Changes in blood gases are sensed by glomus cells in the carotid body that synapse on afferent terminals of the carotid sinus nerve that projects to respiratory-related n...

متن کامل

Acetylcholine increases intracellular calcium of arterial chemoreceptor cells of adult cats.

Acetylcholine increases intracellular calcium of arterial chemoreceptor cells of adult cats. J. Neurophysiol. 78: 2388-2395, 1997. Several neurotransmitters have been reported to play important roles in the chemoreception of the carotid body. Among them acetylcholine (ACh) appears to be involved in excitatory processes in the cat carotid body. As one of the steps to elucidate possible roles of ...

متن کامل

Sílvia Vilares Conde

Carotid bodies (CB) are peripheral chemoreceptor organs sensing changes in arterial blood O2, CO2 and pH levels. Hypoxia and acidosis or hypercapnia activates CB chemoreceptor cells, which respond by releasing neurotransmitters in order to increase the action potential frequency in their sensory nerve, the carotid sinus nerve (CSN). CSN activity is integrated in the brainstem to induce a fan of...

متن کامل

Correlation between adenosine triphosphate levels, dopamine release and electrical activity in the carotid body: support for the metabolic hypothesis of chemoreception.

An unsolved issue for the arterial chemoreceptors is the mechanism by which hypoxia and other natural stimuli lead to an increase of activity in the carotid sinus nerve. According to the 'metabolic hypothesis', the hypoxic activation of the carotid body (CB) is mediated by a decrease of the ATP levels in the type I cells, which then release a neurotransmitter capable of exciting the sensory ner...

متن کامل

Chemoreception in the context of the general biology of ROS.

Superoxide anion is the most important reactive oxygen species (ROS) primarily generated in cells. The main cellular constituents with capabilities to generate superoxide anion are NADPH oxidases and mitochondrial respiratory chain. The emphasis of our article is centered in critically examining hypotheses proposing that ROS generated by NADPH oxidase and mitochondria are key elements in O(2)-s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 82 5  شماره 

صفحات  -

تاریخ انتشار 1985